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Tendency towards maximum complexity in a nonequilibrium isolated system
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The time evolution equations of a simplified isolated ideal gas, the ‘‘tetrahedral’’ gas, are derived. The
dynamical behavior of the Lo´pez-Ruiz–Mancini–Calbet complexity@R. López-Ruiz, H. L. Mancini, and X.
Calbet, Phys. Lett. A209, 321 ~1995!# is studied in this system. In general, it is shown that the complexity
remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions
when the isolated ‘‘tetrahedral’’ gas evolves towards equilibrium. In addition to the well-known increase in
entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of
the system in phase space approach the maximum complexity path as it evolves toward equilibrium.
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I. INTRODUCTION

Several definitions of complexity, in the general sense
the term, have been presented in the literature. These ca
classified according to their calculation procedure into t
broad and loosely defined groups.

One of these groups is based on computational scie
and consists of all definitions based on algorithms or
tomata to derive the complexity. Examples are the logi
depth @1#, the e-machine complexity@2#, and algorithmic
complexity @3#. These definitions have been shown to
very useful in describing symbolic dynamics of chao
maps, but they have the disadvantage of being very diffi
to calculate.

Another broad group consists of those complexities ba
on the measure of entropy or entropy rate. Among these
may cite the metric orK-S entropy rate@4,5#, the thermody-
namic depth@6#, the effective measure complexity@7#, and
the simple measure for complexity@8#. These definitions
have also been very useful in describing symbolic dynam
maps, the latter having been applied to a nonequilibri
Fermi gas@9#. They suffer the disadvantage of either bei
very difficult to calculate or having a simple relation to th
regular entropy.

New definition types of complexity have recently be
introduced. These are based on quantities that can be c
lated directly from the distribution function describing th
system. One of these is based on ‘‘metastatistics’’@10# and
the other on the notion of ‘‘disequilibrium’’@11#. This latter
definition will be referred to hereafter as the Lo´pez-Ruiz–
Mancini–Calbet~LMC! complexity. These definitions, to
gether with the simple measure for complexity@8# described
above, have the great advantage of allowing easy calc
tions within the context of kinetic theory and of permittin
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their evaluation in a natural way in terms of statistical m
chanics.

The disequilibrium-based complexity is easy to calcul
and shows some interesting properties@11#, but suffers from
the main drawback of not being very well behaved as
system size increases, or equivalently, as the distribu
function becomes continuous@12#. Feldman and Crutchfield
tried to solve this problem by defining another equivale
term for disequilibrium, but ended up with a complexity th
was a trivial function of the entropy.

Whether these definitions of complexity are useful in no
equilibrium thermodynamics will depend on how they b
have as a function of time. There is a general belief th
although the second law of thermodynamics requires ave
entropy ~or disorder! to increase, this does not in any wa
forbid local order from arising@13#. The clearest example i
seen with life, which can continue to exist and grow in
isolated system for as long as internal resources last. In o
words, in an isolated system the entropy must increase, b
should be possible, under certain circumstances, for the c
plexity to increase.

In this paper we will examine how LMC complexit
evolves with time in an isolated system and we will sho
that it indeed has some interesting properties. T
disequilibrium-based complexity defined in Ref.@11# actu-
ally tends to be maximal as the entropy increases in a B
zmann integrodifferential equation for a simplified gas.

In Sec. II LMC complexity definition is reviewed. We
proceed to calculate the distributions which maximize a
minimize the complexity and its asymptotic behavior, a
also introduce the basic concepts underlying the time ev
tion of LMC complexity in Sec. III. Later, in Sec. IV, by
means of numerical computations following a restricted v
sion of the Boltzmann equation, we apply this to a spec
system, which we shall term ‘‘tetrahedral gas.’’ Finally,
Sec. V, the results and possible future lines of investigat
are discussed, together with their possible applications. A
lytical and numerical demonstrations of the results of
numerical calculations for the tetrahedral gas are shown
the appendixes.
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II. DEFINITION OF COMPLEXITY

The definition of LMC complexityC is

C5DH, ~1!

whereD is the disequilibrium term andH is the entropy. We
assume that the system can be in one ofN possible accessible
statesi. The probability of the system being in statei will be
given by the discrete distribution functionf i . The system is
defined such that, if isolated, it will reach equilibrium, wi
all the states having equal probabilityf e .

These definitions imply that all values off i are positive

f i>0, ~2!

and that a normalizationI must hold such that

I[(
i 51

N

f i51, ~3!

and the equilibrium distribution function is

f e5
1

N
. ~4!

The definition of disequilibriumD is given as a distance t
the probability in equilibriumf e :

D[(
i 51

N

~ f i2 f e!
2. ~5!

The normalized entropyH is defined as

H[2
1

ln N (
i 51

N

f i ln f i . ~6!

Note that since 0<H<1 and 0<D<(N21)/N, the com-
plexity C is normalized (0<C<1).

III. COMPLEXITY VERSUS TIME

A. Complexity versus entropy

We are interested in an isolated system with an ini
arbitrary discrete distribution, and which evolves towa
equilibrium, where it reaches an equiprobability distributio
To study the time evolution of the complexity, a diagram
C versus timet can be used. But, as we know, the second l
of thermodynamics states that the entropy grows monot
cally with time; that is,

dH

dt
>0. ~7!

This implies that an equivalent way to study the tim
evolution of the complexity can be obtained by plottingC
versusH. In this way, the entropy substitutes the time ax
since the former increases monotonically with the latter. T
conversion fromC vs H to C vs t diagrams is achieved b
stretching or shrinking the entropy axis according to its ti
06611
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evolution. This method is a key point in all this discussio
Note that, in any case, the relationship ofH versust will, in
general, not be a simple one@14#.

B. Maximum and minimum complexity

When an isolated system evolves with time, the compl
ity cannot have any possible value in aC versusH map, but
it must stay within certain boundsCmax andCmin . These are
the maximum and minimum values ofC for a givenH. Since
C5DH, finding the extrema ofC for constantH is equiva-
lent to finding the extrema ofD.

There are two restrictions onD: the normalizationI and
the fixed value of the entropyH. To find these extrema un
determined Lagrange multipliers are used. Differentiat
Eqs.~3!, ~5!, and~6! we obtain

]D

] f j
52~ f j2 f e!, ~8!

]I

] f j
51, ~9!

]H

] f j
52

1

ln N
~ ln f j11!. ~10!

Defining l1 andl2 as the Lagrange multipliers, we get

2~ f j2 f e!1l11l2~ ln f j11!/ ln N50. ~11!

Two new parametersa andb which are a linear combi-
nations of the Lagrange multipliers are defined:

f j1a ln f j1b50, ~12!

where the solutions of this equation,f j , are the values tha
minimize or maximize the disequilibrium. In the maximu
complexity case there are two solutionsf j to Eq. ~12! which
are shown in Table I. One of these solutionsf max is given by

H52
1

ln N F f maxln f max1~12 f max!lnS 12 f max

N21 D G ,
~13!

and the other solution by (12 f max)/(N21).
The maximum disequilibriumDmax for a fixedH is

TABLE I. Probability valuesf j that give a maximum of disequi
librium Dmax for a givenH.

Number of states with f j Range off j

with f j

1 f max
1

N
→1

N21
12fmax

N21
0→ 1

N

6-2
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TENDENCY TOWARDS MAXIMUM COMPLEXITY IN A . . . PHYSICAL REVIEW E 63 066116
Dmax5~ f max2 f e!
21~N21!S 12 f max

N21
2 f eD 2

, ~14!

and thus, the maximum complexity, which depends only
H is

Cmax~H !5Dmax~H !H. ~15!

Note that the behavior of the maximum value of complex
versus lnN has been studied in Ref.@15#.

Equivalently, the valuesf j that give a minimum complex
ity are shown in Table II. One of the solutionsf min is given
by

H52
1

ln N F f min ln f min1~12 f min!lnS 12 f min

N2n21D G ,
~16!

wheren is the number of states withf j50 and takes a value
in the rangen50,1, . . . ,N22.

The resulting minimum disequilibriumDmin for a givenH
is

Dmin5~ f min2 f e!
21~N2n21!S 12 f min

N2n21
2 f eD 2

1n fe
2 .

~17!

Note that in this casef j50 is an additional hidden solutio
that stems from the positive restriction in thef i values, Eq.
~2!. To obtain these solutions explicitly we can definexi such
that

f i[xi
2 . ~18!

Thesexi values do not have the restriction imposed
Eq. ~2! and can take a positive or negative value. If we rep
the Lagrange multiplier method with these new variable
new solution arises:xj50 or, equivalently,f j50.

The resulting minimum complexity, which again only d
pends onH is

Cmin~H !5Dmin~H !H. ~19!

As an example, the maximum and minimum of comple
ity Cmax andCmin are plotted as a function of the entropyH
in Fig. 1 for N54. In Fig. 2 the maximum and minimum
disequilibriumDmax andDmin versusH are also shown.

TABLE II. Probability valuesf j that give a minimum of dis-
equilibrium Dmin for a givenH.

Number of states f j Range off j

with f j
a

n 0 0

1 f min 0→ 1

N2n

N2n21
12fmin

N2n21

1

N2n
→ 1

N2n21

an can have the values 0,1, . . . ,N22.
06611
n
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C. Minimum ‘‘envelope’’

As shown in Fig. 2 the minimum disequilibrium functio
is piecewise defined, having several points where its der
tive is discontinuous. Each of these function pieces co
sponds to a different value ofn ~Table II!. In some circum-
stances it might be helpful to work with the ‘‘envelope’’ o
the minimum disequilibrium function. The functionDminenv
that traverses all the discontinuous derivative points in
Dmin versusH plot is

Dminenv5e2H ln N2
1

N
, ~20!

and is also shown in Fig. 2.

FIG. 1. Maximum, minimum, and minimum envelope comple
ity Cmax, Cmin , andCminenv, respectively, as a function of the en
tropy, H, for a system withN54 accessible states.

FIG. 2. Maximum, minimum, and minimum envelope disequ
librium Dmax, Dmin , andDminenv, respectively, as a function of th
entropyH for a system withN54 accessible states.
6-3
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D. Asymptotic behavior of the complexity asN\`

WhenN tends toward infinity the probabilityf max of the
dominant state has a linear dependence with the entropy

lim
N→`

f max512H, ~21!

and thus the maximum disequilibrium scales as

lim
N→`

Dmax5~12H !2. ~22!

The maximum complexity tends to

lim
N→`

Cmax5H~12H !2. ~23!

The limit of the minimum disequilibrium and complexit
vanishes

lim
N→`

Dminenv50 ~24!

and, thus,

lim
N→`

Cmin50. ~25!

In general, in the limitN→`, the complexity is not a trivial
function of the entropy, in the sense that for a givenH there
exists a range of complexities between 0 andCmax @Eqs.~25!
and ~23!#.

In particular, in this asymptotic limit, the maximum o
Cmax is found when H51/3, or equivalently f max52/3,
which gives a maximum of the maximum complexity
Cmax54/27. This was numerically calculated by Anteneo
and Plastino in Ref.@15#.

IV. AN EXAMPLE: THE TETRAHEDRAL GAS

A. The tetrahedral gas

We present a simplified example of an ideal gas: the
rahedral gas. This system is generated by a simplificatio
the Boltzmann integrodifferential equation of an ideal g
We are interested in studying the disequilibrium time evo
tion.

The Boltzmann integrodifferential equation of an ide
gas with no external forces and no spatial gradients is

] f ~v;t !

]t
5E d3v* E dVc.m.s~v* 2v→v

*
8 2v8!uv* 2vu

3@ f ~v
*
8 ;t ! f ~v8;t !2 f ~v* ;t ! f ~v;t !#, ~26!

wheres represents the cross section of a collision betw
two particles with initial velocitiesv and v* and after the
collision with velocitiesv8 and v

*
8 ; and Vc.m. are all the

possible dispersion angles of the collision as seen from
center of mass.

In the tetrahedral gas, the particles can travel only in f
directions in three-dimensional space and all have the s
absolute velocity. These directions are the ones given
06611
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joining the center of a tetrahedron with its corners. The
rections can be easily viewed by recalling the directio
given by a methane molecule, or equivalently, by a caltr
which is a device with four metal points so arranged th
when any three are on the ground the fourth projects upw
as a hazard to the hooves of horses or to pneumatic tires~see
Fig. 3!.

By definition, the angle that one direction forms with an
other is the same. It can be shown that the angles betw
different directionsa satisfy the relationship cosa521/3,
which givesa5109.47°. The plane formed by any two d
rections is perpendicular to the plane formed by the rema
ing two directions.

We assume that the cross sections is different from zero
only when the angle between the velocities of the collidi
particles is 109.47°. It is also assumed that this collis
makes the two particles leave in the remaining two dir
tions, thus again forming an angle of 109.47°. A cons
quence of these restrictions is that the modulus of the ve
ity is always the same no matter how many collisions
particle has undergone and they always stay within the
rections of the vertices of the tetrahedron. Furthermore,
type of gas does not break any law of physics and is perfe
valid, although hypothetical.

We label the four directions originating from the center
the caltrop with numbers, 1,2,3,4~see Fig. 3!. The velocity
components with the same direction but opposite sense
equivalently, directed toward the center of the caltrop,
labeled with negative numbers21,22,23,24.

In order to formulate the Boltzmann equation for the t
rahedral gas, and because all directions are equivalent
need only study the different collisions that a particle w
one fixed direction can undergo. In particular if we take
particle with direction21 the result of the collision with
another particle with direction22 are the same two particle
traveling in directions 3 and 4; that is,

~21,22!→~3,4!.

With this in mind the last bracket of Eq.~26! is

f 3f 42 f 21f 22 ,

FIG. 3. The four possible directions of the velocities of t
tetrahedral gas in space. Positive senses are defined as eme
from the center point and with integer numbers 1,2,3,4.
6-4
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TENDENCY TOWARDS MAXIMUM COMPLEXITY IN A . . . PHYSICAL REVIEW E 63 066116
where f i denotes the probability of finding a particle in d
rection i . Note that the dependence on velocityv of the con-
tinuous velocity distribution functionf (v;t) of Eq. ~26! is in
our case contained in the discrete subindexi of the distribu-
tion function f i .

We can proceed in the same manner with the other
maining collisions

~21,23!→~2,4!,

~21,24!→~2,3!.

When a particle with direction21 collides with a particle
with direction 2, they do not form an angle of 109.47°; i.
they do not collide, they just pass by each other. This i
consequence of the previous assumption for the tetrahe
gas, which establishes a null cross section for angles dif
ent from 109.47°. The same can be said for collisio
(21,3), (21,4), and (21,1). All these results are summa
rized in Table III.

Taking all this into account, Eq.~26! for direction21 is
reduced to a discrete sum

d f21

dt
5~ f 3f 42 f 21f 22!1~ f 2f 42 f 21f 23!

1~ f 2f 32 f 21f 24!, ~27!

where all other factors have been set to unity for simplic
The seven remaining equations are

d f22

dt
5~ f 3f 42 f 21f 22!1~ f 1f 42 f 22f 23!

1~ f 1f 32 f 22f 24!,

d f23

dt
5~ f 2f 42 f 23f 21!1~ f 4f 12 f 23f 22!

1~ f 1f 22 f 23f 24!,

d f24

dt
5~ f 2f 32 f 24f 21!1~ f 3f 12 f 24f 22!

1~ f 1f 22 f 24f 23!,

d f1

dt
5~ f 23f 242 f 1f 2!1~ f 22f 242 f 1f 3!1~ f 22f 232 f 1f 4!,

TABLE III. Cross sectionss for a particle in direction21 in
Fig. 3 colliding with particles in the other remaining directions
the tetrahedral gas.

Collision Cross section
s

(21,22)→(3,4) 1
(21,23)→(2,4) 1
(21,24)→(2,3) 1
Other collisions 0
06611
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d f2

dt
5~ f 23f 242 f 1f 2!1~ f 21f 242 f 2f 3!1~ f 22f 232 f 2f 4!,

d f3

dt
5~ f 22f 242 f 3f 1!1~ f 21f 242 f 3f 2!1~ f 21f 222 f 3f 4!,

d f4

dt
5~ f 22f 232 f 4f 1!1~ f 21f 232 f 4f 2!1~ f 21f 222 f 3f 4!.

~28!

If we now makef i5 f 2 i ( i 51,2,3,4) initially, this prop-
erty is conserved in time. The final four equations defini
the evolution of the system are

d f1

dt
5~ f 3f 42 f 1f 2!1~ f 2f 42 f 1f 3!1~ f 2f 32 f 1f 4!,

d f2

dt
5~ f 3f 42 f 1f 2!1~ f 1f 42 f 2f 3!1~ f 1f 32 f 2f 4!,

d f3

dt
5~ f 2f 42 f 3f 1!1~ f 1f 42 f 3f 2!1~ f 1f 22 f 3f 4!,

d f4

dt
5~ f 2f 32 f 4f 1!1~ f 1f 32 f 4f 2!1~ f 1f 22 f 3f 4!.

~29!

Note that the ideal gas has been reduced to the tetrahe
gas, which is a four-dimensional dynamical system. The
locity distribution functionf i corresponds to the probabilit
distribution function of Sec. II withN54 accessible states

B. Evolution of the tetrahedral gas with time

The tetrahedral gas@Eq. ~29!# reaches equilibrium when
f i51/N for i 51,2,3,4 andN54. This stationary state
d fi /dt50, represents the equiprobability towards which t
system evolves in time. This is consistent with the previo
definition of disequilibrium, Eq.~5!, in which we assumed
that equilibrium was reached at equiprobability, whereD
50.

As the isolated system evolves it gets closer and close
equilibrium. In this sense, one may intuitively think that th
disequilibrium will decrease with time. In fact, it can b
shown that, as the system approaches equilibrium,D tends to
zero monotonically with time:

dD

dt
<0. ~30!

The analytical demonstration of this inequality for the tet
hedral gas is shown in Appendix A.

There are even more restrictions on the evolution of t
system. It would be expected that the system approac
equilibrium D50 by following the most direct path. To
verify this, numerical simulations for several initial cond
tions have been undertaken. In all of these we observe
additional restriction thatD approachesDmax on its way to
D50. In fact it appears as an exponential decay ofD to-
6-5
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FIG. 4. Time evolution of the system in
(H,D) phase space for two different initial con
ditions at time t50: ~a! ( f 1 , f 2 , f 3 , f 4)
5(0.8,0.2,0,0) and ~b! ( f 1 , f 2 , f 3 , f 4)
5(0.5,0.5,0,0). The maximum and minimum
disequilibrium are shown by dashed lines.
f

qu

as
he
if-

in
ns

e
o

ty

as,
is-

and

s-
e
e-

et
ry:
wards Dmax in a D versusH plot. As an example, two o
these are shown in Fig. 4, where Fig. 4~a! shows a really
strong tendency towardsDmax. Contrary to intuition, among
all the possible paths that the system can follow toward e
librium, it chooses those closest toDmax in particular.

We can also observe this effect in a complexityC versus
H plot. This is shown for the same two initial conditions
the previous figure in Fig. 5. This additional restriction to t
evolution of the system is better viewed by plotting the d
ferenceCmax2C versusH. In all the cases analyzed~see two
in Fig. 6! the following condition is observed:

d~Cmax2C!

dt
<0. ~31!

This has been verified numerically and is illustrated
Fig. 7, where this time derivative, which always remai
negative, is shown as a function ofH for a grid of uniformly
spaced distribution functions (f 1 , f 2 , f 3 , f 4) satisfying the
normalization condition Eq.~3!. Two system trajectories ar
also shown for illustrative purposes. The numerical meth
used to plot this function is explained in Appendix B.

C. Maximum complexity path as an attractive trajectory

As shown in Table I, a collection of maximum complexi
distributions forN54 can take the form

f 15 f max,
06611
i-

d

f i5
12 f max

3
, i 52,3,4, ~32!

where f max runs from 1/N ~equiprobability distribution! to 1
~‘‘crystal’’ distribution!. The complexity of this collection of
distributions covers all possible values ofCmax.

There is actually a time evolution of the tetrahedral g
or trajectory of the system, formed by this collection of d
tributions. Inserting Eqs.~32! in the evolution Eqs.~29!, it is
found that all equations are compatible with each other
the dynamical equations are reduced to the relation

d fmax

dt
5

1

3
~4 f max

2 25 f max11!. ~33!

This trajectory is denoted as themaximum complexity path.
Note that the equiprobability or equilibriumf max51/4 is a

stable fixed point and the maximum disequilibrium ‘‘cry
tal’’ distribution f max51 is an unstable fixed point. Thus th
maximum complexity path is a heteroclinic connection b
tween the ‘‘crystal’’ and equiprobability distributions.

The maximum complexity path is locally attractive. L
us assume, for instance, the following perturbed trajecto

f 15 f max,

f 25
12 f max

3
,

-

FIG. 5. Time evolution of the system in

(H,C) phase space for two different initial con
ditions at time t50: ~a! ( f 1 , f 2 , f 3 , f 4)
5(0.8,0.2,0,0) and ~b! ( f 1 , f 2 , f 3 , f 4)
5(0.5,0.5,0,0). The maximum and minimum
complexity are shown by dashed lines.
6-6
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FIG. 6. Time evolution of the system in
(H,Cmax2C) phase space for two different initia
conditions at time t50: ~a! ( f 1 , f 2 , f 3 , f 4)
5(0.8,0.2,0,0) and ~b! ( f 1 , f 2 , f 3 , f 4)
5(0.5,0.5,0,0). The valuesCmax2Cmin are
shown by dashed lines.
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f 35
12 f max

3
1d,

f 45
12 f max

3
2d, ~34!

whose evolution according to Eq.~29! gives the exponentia
decay of the perturbationd:

dd

dt
;2S 4 f max12

3 D d, ~35!

showing the attractive nature of these trajectories.

V. CONCLUSION

The time evolution of the LMC complexityC has been
studied for a simplified model of an isolated ideal gas:
tetrahedral gas. In general, the dynamical behavior of
quantity is bounded between two extremum curvesCmax and

FIG. 7. Numerical verification ofd(Cmax2C)/dt<0. This time
derivative is shown as a function ofH. A grid of uniformly spaced,
D f i50.5, distribution functions, (f 1 , f 2 , f 3 , f 4), satisfying the nor-
malization condition Eq.~3!, have been used. Two system trajec
ries for initial conditionst50, (f 1 , f 2 , f 3 , f 4)5(0.8,0.2,0,0) and
( f 1 , f 2 , f 3 , f 4)5(0.5,0.5,0,0) are also shown for illustrative pu
poses. It can be seen how the above-mentioned time deriva
always remains negative.
06611
e
is

Cmin , when observed in aC versusH phase space. Thes
complexity bounds have been derived.

For the isolated tetrahedral gas two constraints on its
namics are found. The first, which is analytically demo
strated, is that the disequilibriumD decreases monotonicall
with time until it reaches the valueD50 for the equilibrium
state. The second is that the maximum complexity pa
Cmax are attractive in phase space. In other words, the c
plexity of the system tends to equilibrium always approa
ing those paths. We verify this numerically; that is, the tim
derivative of the difference betweenCmax andC is negative.

Figure 8 summarizes the dynamical behavior of the te
hedral gas. The different trajectories starting with arbitra
initial conditions, which represent systems out of equil
rium, evolve towards equilibrium approaching the maximu
complexity path.

Observe that the time evolution of complexity could
calculated for other definitions of complexity. However,
general this will not be an easy task since they are either v
difficult to calculate, such as, for example, the algorithm
complexity @3#, or have a simple relation to the regular e
tropy, such as the simple measure for complexity@8#.

ve

FIG. 8. Summary of this paper. The time evolution of the sy
tem for three different initial conditions,t50, (f 1 , f 2 , f 3 , f 4)
5(0.8,0.2,0,0), (f 1 , f 2 , f 3 , f 4)5(0.5,0.5,0,0), and the maximum
complexity path are shown. The minimum complexity is shown
dashed lines. It can be seen how the system tends to approac
maximum complexity path as it evolves in time toward equilibriu
6-7



y
an
iu
h
d

se
a
a

um

ity

e
ing
t

n-

.

s
-

om
by
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Whether these properties are useful in real physical s
tems will depend on further work on this subject. More c
be said about the macroscopical nature of the disequilibr
when this work is extended to more general systems, suc
to the ideal gas following the complete Boltzmann integro
ifferential equation. Another feature, which could prove u
ful, would be to approximate the evolution of a real physic
system trajectory to its maximum complexity path. Note th
in general, for a real system, the calculation of the maxim
complexity path will not be an easy task.

APPENDIX A: PROOF OF THE MONOTONIC DECREASE
IN DISEQUILIBRIUM WITH TIME

We now present the analytical proof of the inequal
shown in Eq.~30! from Sec. IV B,

dD

dt
<0. ~A1!

The time derivative of the disequilibriumD for the iso-
lated tetrahedral gas is explicitly given by

dD

dt
5

d

dt (
i

~ f i2 f e!
25(

i
2 f i

d f i

dt
2(

i
2 f e

d f i

dt
.

~A2!

Using the normalization Eq.~3! we find that

(
i

d f i

dt
50, ~A3!

and we are left with

dD

dt
52(

i
f i

d f i

dt
. ~A4!

If we substitute Boltzmann Eq.~29! in the previous one, we
obtain

F[
1

2

dD

dt
51 f 1f 3f 42 f 1

2f 21 f 1f 2f 42 f 1
2f 31 f 1f 2f 32 f 1

2f 4

1 f 2f 3f 42 f 1f 2
21 f 1f 2f 42 f 3f 2

21 f 1f 2f 32 f 2
2f 41 f 1f 3f 4

2 f 3
2f 21 f 2f 3f 42 f 1f 3

21 f 1f 2f 32 f 3
2f 41 f 1f 2f 42 f 3f 4

2

1 f 1f 3f 42 f 2f 4
21 f 2f 3f 42 f 1f 4

2 , ~A5!

where the new variableF has been defined.
We now split this functionF into two different terms:

G[2 f 1
2f 22 f 2

2f 12 f 3
2f 12 f 3

2f 22 f 4
2f 12 f 4

2f 21 f 1f 3f 4

12 f 1f 2f 312 f 1f 2f 41 f 2f 3f 4 ~A6!

and

K[2 f 3
2f 42 f 4

2f 32 f 1
2f 32 f 1

2f 42 f 2
2f 32 f 2

2f 41 f 1f 2f 3

12 f 1f 3f 412 f 2f 3f 41 f 1f 2f 4 . ~A7!
06611
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Then

F5G1K. ~A8!

Note thatG andK are symmetrical functions, in the sens
that we can transform one into the other by chang
( f 1 , f 2 , f 3 , f 4) by ( f 3 , f 4 , f 1 , f 2), respectively. To prove tha
G<0, the following variable change is performed:

f 15y1 ,

f 25y2 ,

f 35y31y4 ,

f 45y32y4 . ~A9!

The positivity of the distributions functions, Eq.~2!, im-
plies that,y1>0 andy2>0.

The functionG in the new variables reads

G52y1
2y22y2

2y12y3
2y123y4

2y12y3
2y223y4

2y214y1y2y3 .

~A10!

Regrouping terms,G can be expressed as

G52y2~y12y3!22y1~y22y3!223y4
2y123y4

2y2 .
~A11!

Sincey1 and y2 are both positive and the squared qua
tities are also positive, we conclude that

G<0. ~A12!

The same inequality can be demonstrated forK due to its
symmetry with G, thus proving the assumption from Eq
~A1!.

APPENDIX B: METHOD OF CALCULATING THE TIME
DERIVATIVE OF THE MAXIMUM COMPLEXITY

MINUS THE COMPLEXITY

To calculate the quantity

d~Cmax2C!

dt
~B1!

from some given values of the distribution function
( f 1 , f 2 , f 3 , f 4) we derive the expression of maximum com
plexity, Eq.~15!, minus the definition of complexity, Eq.~1!,
obtaining

d~Cmax2C!

dt
5

dDmax

dt
H1Dmax

dH

dt
2

dD

dt
H2D

dH

dt
.

~B2!

Let us now examine each of these terms beginning fr
the end. The time derivative of the entropy is calculated
differentiating its definition, Eq.~6!:

dH

dt
52

1

ln N (
i

Fd fi

dt
ln f i1

d fi

dt G . ~B3!
6-8
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But recalling Eq.~A3! we can simplify this to

dH

dt
52

1

ln N (
i

Fd fi

dt
ln f i G . ~B4!

This last term can be easily calculated using the evolu
Eqs.~29!.

The termsD andH can be readily calculated using the
definitions from Eqs.~5! and ~6!. The time derivative of the
disequilibrium has already been expressed in Appendix
with Eq. ~A5!.

The maximum disequilibrium is calculated with the pr
vious found value ofH by inverting Eq.~13! and obtaining
06611
n

A

f max. After this, the expression defining the maximum d
equilibrium, Eq.~14!, can be used.

Finally the time derivative of the maximum disequilib
rium is calculated as follows:

dDmax

dt
5

dDmax

d fmax

d fmax

dH

dH

dt
. ~B5!

The first two derivatives on the right-hand side can be c
culated analytically with Eqs.~14! and ~13!. The numerical
value can be found using the previously calculated value
f max.
A
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